skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ryan, Caillin J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ultra-high temperature ceramics (UHTCs) are refractory transition-metal carbides, nitrides, and borides with the highest melting temperatures known materials, making them prime candidates for applications in aerospace and hypersonic vehicles. Of the UHTCs, tantalum carbide (TaC) and hafnium carbide (HfC) feature the highest melting temperatures. We investigated the binderless consolidation of HfC/TaC powder blends using Field Assisted Sintering Technology (FAST). Powders consisting of 90/10, 50/50, and 10/90 vol% HfC:TaC were sintered to high densities (>94 %). Bulk and nanomechanical, chemical, and microstructural characterization revealed substantially greater strength, hardness, and stiffness for ternary alloys. Mechanical properties correlated with physiochemical analysis indicated trace oxygen phases, solid-solution strengthening, and nonstoichiometric carbon were the key mechanisms driving the peak property enhancement of the 50 vol% solid-solution sample, despite lower densities. This study provides insight into optimizing the compositional design of HfC-TaC alloys by balancing influences from solid solution strengthening and the thermodynamic effects of oxygen/carbon stoichiometry. 
    more » « less
  2. Abstract The need for improved functionalities in extreme environments is fuelling interest in high-entropy ceramics1–3. Except for the computational discovery of high-entropy carbides, performed with the entropy-forming-ability descriptor4, most innovation has been slowly driven by experimental means1–3. Hence, advancement in the field needs more theoretical contributions. Here we introduce disordered enthalpy–entropy descriptor (DEED), a descriptor that captures the balance between entropy gains and enthalpy costs, allowing the correct classification of functional synthesizability of multicomponent ceramics, regardless of chemistry and structure. To make our calculations possible, we have developed a convolutional algorithm that drastically reduces computational resources. Moreover, DEED guides the experimental discovery of new single-phase high-entropy carbonitrides and borides. This work, integrated into the AFLOW computational ecosystem, provides an array of potential new candidates, ripe for experimental discoveries. 
    more » « less